Effect of an 8-Hydroxymethyl Substituent on the Base-Catalyzed Ring Opening of 7,8-Epoxyiridoid Glucosides

Enrico Davini,* Carlo Iavarone,* and Corrado Trogolo*

Centro di Studio per la Chimica delle Sostanze Organiche Naturali del CNR, Istituto di Chimica Organica dell'Università di Roma, 00185 Roma, Italy

Received October 20, 1982

Base-catalyzed ring opening of 7,8-epoxyiridoids has been found to be dependent on the substitution pattern at C-8. Epoxyiridoids 5, 6, and 10 (CH₃-8) react in barium or sodium hydroxide solutions through a normal S_N^2 process, yielding the expected $7\alpha,8\beta$ -diols while for iridoids 3 and 4 (CH₂OH-8) the stereochemistry of the final diol function is reversed ($7\beta,8\alpha$). This abnormal S_N^2 process is explained by a preliminary "epoxide migration" from carbons 7,8 to 8,10 followed by normal oxirane cleavage. Participation of the CH₂OH-8 substituent in the cleavage reaction is proved by the behavior of the hexa-O-methyl derivative of 3 which gives the normal $7\alpha,8\beta$ -diol. Four new nonnatural iridoid glucosides (9, 11, 14, 16) are also described and spectroscopically (¹H and ¹³C NMR) characterized.

In previous papers we reported on the structure and stereochemistry of two highly oxygenated iridoid glucosides, cynanchoside $(1)^1$ and 5,7-dideoxycynanchoside $(2)^2$, which were isolated from *Macfadyena cynanchoides* (Bignoniaceae) in addition to the known macfadyenoside $(3)^3$ (Chart I).

In the course of that research, chemical evidence for structure 2 was obtained by reductive cleavage of the epoxide ring of the hexaacetyl derivative of catalpol $(4)^4$ with LiAlH₄ in THF. As expected in a normal S_N^2 process, the attack of the hydride ion occurred at the less highly substituted carbon atom (C-7) of the epoxide ring with retention of the configuration of the C-8 center and formation of 5,7-dideoxycynanchoside(2).

Previously two 7,8-epoxyiridoids, antirrhinoside (5)⁵ and galiridoside (6),⁶ were reported to react with hot barium hydroxide solutions to yield, respectively, 7α -hydroxyharpagide (7) and deepoxydihydroxygaliridoside (8).⁷ In both cases the 7α ,8 β -diols obtained corresponded to the "normal diol"⁸ expected from nucleophilic attack in the "normal" S_N2 process described above. By analogy we tried, therefore, to demonstrate the correct stereochemistry of 1, only in part inferrable from analysis of ¹³C NMR data, by transforming 3 into 1 through epoxide ring cleavage under the same basic conditions.

Surprisingly, the reaction whether carried out in hot barium hydroxide or 2 N sodium hydroxide solutions always gave as the only product the "abnormal diol" **9** (isocynanchoside) with the hydroxyl groups at C-7 and C-8 oriented in a configuration $(7\beta,8\alpha)$ opposite that expected.

To clarify this discrepancy, we repeated the reaction under both conditions on suitable epoxyiridoid models, procumbide (10) and catalpol (4), which differ, as do 5 and

4 Ħ Η OH OH OH 5 Η OH н 6 OH Η Η Н 10 OH OH Н Н OMe 17 OMe OH Η H₂OH 0-β-glucose 9, R = OH12, R = H

Chart I

-1₂R

 \mathbf{R}_{3}

OH

OH

Η

н

25

OH

OMe

OMe

С́Н2R40-β

 \mathbf{R}_{2}

Η

н

Η

 R_2

Η

OH

<u>0-8</u>

C6H70(R6)4

R,

OH

H

Н

н

OH

OMe

OMe

R₆

OH

OH

OH

OH

OH

OMe

OMe

 R_{4}

OH

OH

R,

OH

OH

OH

OH

OH

OMe

н

н

 \mathbf{R}_4

Η

Η

Н

Н

Н

Η

-alucose

-B-C₆H₇O(R₅)₄

R,

OH

R,

OH

OH

OH

 \mathbf{R}_4

OH

Н

Me

R⊿C

 R_2

Η

Н

Η

Н

Η

Н

R,

Η

OH

OH

OH

 \mathbf{R}_{1}

OH

OH

 \mathbf{R}_{1}

OH

OH

OH

OH

OH

OH

Н

1

7

8

11

13

18

19

2

14

15

16

3

⁽¹⁾ C. Bonini, E. Davini, C. Iavarone, and C. Trogolo, *Phytochemistry*, **20**, 1587 (1981).

⁽²⁾ C. Adriani, C. Iavarone, and C. Trogolo, *Phytochemistry*, 21, 231 (1982).

⁽³⁾ A. Bianco, M. Guiso, C. Iavarone, and C. Trogolo, *Gazz. Chim. Ital.* 104, 731 (1974).

^{(4) (}a) J. M. Bobbitt, D. W. Spiggle, S. Mahboob, H. Schmid, and W. von Philipsborn, J. Org. Chem., 31, 500 (1966). (b) J. M. Bobbitt, D. E. Kiely, A. Y.-w. Lam, and E. I. Snyder, J. Org. Chem., 32, 1459 (1967).

⁽⁵⁾ M. L. Scarpati, M. Guiso, and P. Esposito, *Gazz. Chim. Ital.*, 98, 177 (1968).

⁽⁶⁾ O. Sticher, Helv. Chim. Acta, 53, 2010 (1970).

⁽⁷⁾ This compound was later named daunoside by the same author (see ref 12 b).

⁽⁸⁾ In accordance with general practice, products resulting from compliance with "normal S_N^2 nucleophilic attack" to the 7,8-epoxide function will be termed "normal" while those from reactions violating it will be termed "abnormal" (see ref 15 a).

In agreement with the results obtained from 3 and 5, procumbide $(10)^9$ (α -OH at C-6, α -CH₃ at C-8) gave the "normal diol" (7α -OH,8 β -OH) 11 (6α -hydroxydaunoside) while catalpol (4) (β -OH at C-6, α -CH₂OH at C-8) yielded the "abnormal diol" (7β -OH,8 α -OH) 12 identical with the known 10-decinnamoylglobularinin.¹⁰

The structures and stereochemistries of the new 7,8-diols were inferred by comparing their ¹³C NMR data (Table I) with those of useful models, applying the known "C-8 epimeric pairs rule".¹¹ For establishing the stereochemistry of the diol 12 we used ¹³C spectra of both possible 7,8-diols, 10-decinnamoylglobularimin (13,¹⁰ "normal diol") and 10-decinnamoylglobularimin (12,¹⁰ "abnormal diol") while in the case of the cleavage product of 3 ¹³C data of only the "normal diol", cynanchoside (1),¹ were available.

Use of the "trans diol rule"¹³ provided a further criterion for verifying the relative stereochemistry at C-6 and C-7.

Participation of the hydroxyl on C-6 in the 7,8-epoxide ring cleavage may be ruled out as 6 (6-deoxyantirrhinoside), 5, and 10 (6-epiantirrhinoside) were opened to the "normal diol". On the other hand, the results seem to indicate that base-catalyzed cleavage of the epoxide ring depends on the presence or absence of a hydroxyl group on C-10 symmetrically disposed to the hydroxyl on C-6.

This anomalous behavior prompted us to acquire more details on the reactivity of 7,8-epoxyiridoids.

As already observed for the LiAlH₄ reduction of catalpol hexaacetate,^{2,4b} reduction of acetyl derivatives of 3, 5, and 10 proceeded by normal S_N^2 process to give invariably the "normal" opened products 7-deoxycynanchoside (14), harpagide (15), and 6-epiharpagide (16).

The formation of the "normal" product in the reaction of LiAlH₄ with two pairs of differently C-8-substituted epoxyiridoids (5-10 with CH₃-8 and 3 and 4 with CH₂OH-8) ruled out the possibility that the anomalies observed in the base-catalyzed ring opening of epoxyiridoids with a CH₂OH-8 could be ascribed to the α orientation of the epoxide ring, opposite the one currently accepted.

To rationalize the anomalous results obtained in the basic cleavage of 3 and 4, we postulated the mechanistic hypothesis shown in eq 1.

The reaction implies initial formation of the anion from the hydroxyl group at C-10, adjacent to the epoxide ring. This nucleophile attacks the C-8 carbon from the α side of the molecule, so realizing an intramolecular nucleophilic displacement (S_Ni) with formation of an isomeric 8,10-

(9) The transformation $10 \rightarrow 11$ occurred under both basic conditions with very poor yields, in agreement with the reported instability in Ba-(OH)₂ of iridoids having a trans $5\beta,6\alpha$ -diol system (H. Rimpler and B. Schäfer, Z. Naturforsch., C: Biosci., **34**C, 311 (1979)). The reaction proceeded with more satisfactory yields in strong anionic-exchange resin (see ref 4a).

(11) This rule, widely used in 13 C spectral analysis of iridoids, permits one to assign unambiguously the configuration of geminal substituents at C-8 using the chemical shift values of C-9 as a diagnostic probe (see ref 1 and 12).

⁽¹³⁾ This rule establishes that in *vic*-dihydroxyiridoids the signals from carbons in a *trans*-1,2-diol arrangement appear at lower field than those of the corresponding cis isomer (see ref 12b).

compd	solv	ref	C-1	C-3	C-4	C-5	C-6	C-7	C-8	C-9	C-10	C-1,	C-2′	C-3′	C-4,	C-5'	C-6′
-	D,0	1	91.69	140.55	109.28	64.95	82.53	78.90	76.27	56.16	62.11	98.86	73.35	76.27^{b}	70.60	77.05^{b}	61.63
67	D,O	0	93.28	140.14	105.28	40.82	76.56	44.15	82.14	50.38	67.00	98.93	73.54	76.56^{b}	70.50	76.98^{b}	61.63
ŝ	D,0	21	95.13	142.78	107.13	74.05	77.06	63.27	66.51	50.12	60.56	99.31	73.46	76.38^{b}	70.42	77.06^{b}	61.62
4	D,O		95.53	141.40	103.94	38.10	78.42	62.83	66.61	42.58	60.94	99.34	73.63	76.47^{b}	70.34	$^{4}66.97$	61.55
5 C	D,O	21	94.94	142.90	107.06	74.25	76.78	66.23	64.96	52.07	17.00	99.24	73.45	76.39^{b}	70.43	$^{4}L0.77$	61.55
9	cĎ,OD	12	95.30	141.72	109.57	76.57	44.42	64.20	67.28	54.45	17.60	99.63	74.78	78.46^{b}	71.82	77.85^{b}	63.00
7	D,Ŏ	21	92.01	139.96	109.48	64.17	82.64	78.92	74.91	56.36	16.69	98.74	73.36	76.28^{b}	70.61	77.06^{b}	61.63
œ	cĎ,oD	12	92.31	139.30	111.46	65.64	46.55	78.21^{b}	80.45	58.78	15.91	99.31	74.58	78.06^{b}	71.80	77.61^{b}	62.86
6	D,0		93.79	142.91	106.48	68.78	79.03	77.77	81.17	51.11	66.34	99.06	73.36	76.21^{b}	70.45	76.99^{b}	61.55
10	D,0		95.61	144.18	103.72	79.60	77.64	65.73	67.04	52.18	17.10	99.14	73.55	76.56^{b}	70.42	77.06^{b}	61.62
11	D,O		92.79	141.42	105.19	71.49	78.25	78.25	79.70	56.56	18.28	98.92	73.35	77.05^{b}	70.52	76.21^{b}	61.53
12	$c\tilde{D}_{s}OD^{c}$	12	95.16	141.61	105.27	37.16	78.34^{b}	79.34^{b}	81.03	43.70	66.37	99.20	74.61	466.77	70.39	78.34^{b}	62.42
12	D,Ő		94.83	140.54	105.78	36.53	77.75	79.50	81.95	43.18	66.13	99.15	73.47	76.47^{b}	70.33	76.97^{b}	61.44
13	CĎ,OD	12	93.34	140.39	106.54	37.32	83.14	86.42	80.33	48.04	64.29	99.55	74.61	77.94^{b}	71.54	77.71 b	62.70
14	D,Ō		92.90	142.68	106.82	72.57	77.04	41.57	80.47	56.85	66.49	99.31	73.35	77.10^{b}	70.51	76.26^{b}	61.51
15	D,O	21	93.56	141.99	107.25	71.89	77.06	46.22	77.75	57.83	24.73	99.04	73.27	76.19^{b}	70.45	77.06^{b}	61.54
16	D,0		93.48	142.68	102.74	73.08	76.66	45.44	74.82	57.92	25.69	99.04	73.27	77.05^{b}	70.43	76.21^{b}	61.53
17	CDCI		92.68	143.06	106.75	79.28	86.03	60.84	63.67	46.10	70.80	98.33	83.40	86.42	79.28	75.09	71.45
17^{d}	(CD_3) , CO		92.62			79.79	85.46	60.30	64.46	47.37	72.51^{b}	99.21	84.47	87.06	80.18	75.83	72.17^{b}
18	CDCI		91.79	142.46	107.41	72.28	90.81	81.93	76.56	52.53	71.28^{b}	98.42	83.39	86.79	79.29	75.00	73.13^{b}
18^d	$(CD_3)_2CO$		92.25			72.08	90.84	82.22	76.12	54.00	72.08^{b}		84.45	87.36	80.19	75.74	73.30^{b}
19	CDCI,		91.29	142.38	108.22	71.27	89.25	88.16	76.17	53.91	71.27	98.43	83.88	86.90	79.39	75.00	71.27
19^{d}	$(CD_3)_2CO$		92.11			71.84	90.26	89.70	76.64	54.46	72.11^{b}		84.66	87.37	80.23	75.75	72.28^{b}
^a Chemic	cal shifts are	i given	in parts p	er million.	^b Values	with sam	ie supersci	ript in the l	horizontal	columns	are interc	hangeable	. ^c A fe	w drops of	Me,SO-d	were ad	ded to
increase th	e solubility.	^d In	order to 1	maximize c	ligital resol	lution to	distinguis	h the C-5 a	nd C-8 sig	nals the	spectra we	re permitt	ed to "fc	Id", care l	being take	n to minir	nize or
avoid actua	al superimp	osition	of folded	and nonfc	olded reson	lances.	1		,		•	·)		

Table I. ¹³C NMR Data of Compounds 1–19^a

⁽¹⁰⁾ R. K. Chaudhuri, O. Sticher, and T. Winkler, Tetrahedron Lett. 3149 (1979).

^{(12) (}a) C. Adriani, C. Bonini, C. Iavarone, and C. Trogolo, *Lloydia*,
44, 739 (1981); (b) R. K. Chaudhuri, F. U. Afifi-Yazar, O. Sticher, and T. Winkler, *Tetrahedron.* 36, 2317 (1980); (c) S. Damtoft, S. R. Jensen, and
B. J. Nielsen, *Phytochemistry*, 20, 2717 (1981).

epoxide ring.¹⁴ The new oxirane function then undergoes normal S_N^2 attack of OH^- on the less substituted C-10carbon to yield the final 7β , 8α -diol.

This phenomenon, referred to as "epoxide migration" of 3-hydroxy 1,2-epoxides under basic conditions, is well documented¹⁵ in the carbohydrate and inositol series^{15c} and in simple α,β -epoxy alcohols¹⁶ while the present instance seems to be the first report of this effect in cyclopentanoid epoxides.17

To achieve a chemical proof of the proposed mechanism we prepared 17 from 3 with CH_3I/Ag_2O in dry DMF at room temperature. Protection of the CH₂OH group at C-8 was expected to block the postulated "epoxide migration" and therefore to shift the course of the reaction back toward formation of the "normal" 7,8-diol.

For solubility reasons, cleavage of 17 was carried out in 2 N sodium hydroxide solution containing small amounts of methanol and afforded two products the hexa-O-methyl derivative 18 (the 7,8-diol expected by OH⁻ attack) and the hepta-O-methyl derivative 19 (the 7-O-methyl ether of 18, formed by MeO⁻ attack). Structures were established by analysis of ¹³C NMR spectra: in particular the "C-8 epimeric pairs rule"¹¹ confirmed the presence in both compounds of a free β -orientated OH group at C-8 that is the normal trend of the $S_N 2$ process.

These results confirm the peculiar role exerted by the hydroxymethyl group attached to C-8 in the base-catalyzed cleavage of epoxyiridoids like 3 and 4 and corroborate the mechanistic pathway proposed for explaining the anomalies observed.

Experimental Section

Silica gel SIF₂₅₄ (C. Erba) and cellulose (Merck) plates were used for TLC. Spray reagents were as follows: 2 N H₂SO₄, heating at 120 °C (silica gel plates); vanillin (vanillin, 1 g; concentrated HCl, 2 mL; methanol, 100 mL), heating at 100 °C (cellulose plates). ¹H NMR spectra were registered with Perkin-Elmer R32 (90 MHz) and Varian EM 360-A (60 MHz) instruments, with Me₄Si as an internal standard for the spectra run in CDCl3 and the HDO signal $(\delta 4.70 \text{ from Me}_4\text{Si})$ for those in D₂O. ¹³C NMR spectra, determined at 20 MHz on a Varian CFT-20 Fourier transform computer, were referred to the carbon signal of dioxane (67.4 ppm) and computer converted to δ values from Me₄Si.

Isolation of Iridoids. The naturally occurring iridoid glucosides were isolated according to known procedures from the following plants: cynanchoside (1),¹ 5,7-dideoxycynanchoside (2),² and macfadyenoside $(3)^3$ from Macfadyena cynanchoides; antirrhinoside $(5)^5$ from Antirrhinum tortuosum; procumbide (10)and harpagide (15) from Harpagophytum procumbens.¹⁸ Catalpol (4) from Globularia alypum¹⁹ was kindly supplied by Prof. G. Di Maio, Institute of Organic Chemistry, University of Rome.

General Cleavage Procedure of 7,8-Epoxyiridoids with Barium Hydroxide. Iridoid glucoside (200 mg) was dissolved in 5 mL of a saturated solution of Ba(OH)₂ and heated at 70 °C for 5 h. After neutralization with CO₂, decolorizing charcoal was added until a vanillin test was negative, and the suspension was deposited on a gooch funnel. The salts were removed by elution with water, and the organic fraction was extracted with methanol, which was concentrated in vacuo to give a crude residue.

Isocynanchoside (9) from Macfadyenoside (3). The residue (70 mg) was chromatographed on silica gel (7 g); elution with acetone/water (9:1) afforded 9 (50 mg) as an amorphous compound: ¹H NMR (D₂O) & 2.65 (1 H, brs, H-9), 3.60-3.95 (1 H, H-7), 3.88 (2 H, brs, 2H-10), 4.16 (1 H, d, $J_{6,7}$ = 4.5 Hz, H-6), 5.18 (1 H, d, $J_{3,4}$ = 6 Hz, H-4), 5.70 (1 H, s, H-1), 6.50 (1 H, d, $J_{3,4}$ = 6 Hz, H-3). Anal. Calcd for C₁₅H₂₄O₁₂: C, 45.45; H, 6.10. Found: C, 45.37; H, 6.17.

10-Decinnamoylglobularinin (12) from Catalpol (4). The residue (100 mg) was chromatographed on silica gel (10 g); elution with methylene chloride/ethanol/water (30:20:1) afforded 12 (60 mg). ¹H NMR data are in agreement with those reported in ref 10.

 7α -Hydroxyharpagide (7) from Antirrhinoside (5). The residue (80 mg) was chromatographed on silica gel (8 g); elution with *n*-butyl alcohol/methanol/water (14:1:4) afforded 7 (60 mg). ¹H NMR data are in agreement with those reported in ref 1.

Cleavage of the Oxirane Ring of Procumbide (10).9 Compound 10 (300 mg) dissolved in 5 mL of water was added to an aqueous suspension of strong anionic exchange resin (Merck Type III). The suspension was heated at 70 °C for 48 h with stirring. After filtration the aqueous suspension was concentrated in vacuo and the residue chromatographed on silica gel (20 g). Elution with chloroform/methanol (7:3) afforded unreacted 10 (80 mg) and 11: 32 mg); ¹H NMR (D₂O) δ 1.24 (3 H, s, CH₃-10), 2.40 (1 H, brs, H-9), 3.94 (1 H, d, $J_{6.7}$ = 6 Hz, H-7), 4.14 (1 H, d, $J_{6.7}$ = 6 Hz, H-6), 5.22 (1 H, d, $J_{3,4} = 6$ Hz, H-4), 5.70 (1 H, s, H-1), 6.40 (1 H, d, $J_{3,4} = 6$ Hz, H-3). Anal. Calcd for $C_{15}H_{24}O_{11}$: C, 47.37; H, 6.36. Found: C, 47.28; H, 6.40.

General Cleavage Procedure of 7,8-Epoxyiridoids with **Sodium Hydroxide.** A study of the effects of reaction time and temperature and the base concentration on this reaction was carried out. The procedure described for the conversion of 3 into 9 refers to the optimal conditions found. Similar procedures were followed for the conversion of 4 and 5 into 12 and 7, respectively. Final yields were comparable with those reported for 9.

Isocynanchoside (9) from Macfadyenoside (3). Compound 3 (300 mg) was dissolved in 5 mL of 2 N NaOH and heated at 80 °C for 1 h. The solution was neutralized with 2 N HCl, and decolorizing charcoal was added until the vanillin test was negative. The suspension was deposited on a gooch funnel and eluted first with water to remove the salts and afterward with methanol. The residue was chromatographed on silica gel (20 g) in chloroform/methanol (7:3) and afforded unreacted 3 (120 mg) and 9 (50 mg).

General Cleavage Procedure of 7,8-Epoxyiridoids with Lithium Aluminium Hydride. Preparation of Iridoid Acetates. Iridoid glucoside (100 mg) was dissolved in dry pyridine (0.5 mL) and treated with acetic anhydride (1 mL) for 1 h at room temperature. After addition of methanol, the solution was evaporated in vacuo. The residue was chromatographed on silica gel (10 g) in ethyl ether/benzene (7:3) and afforded the iridoid acetate (95 mg).

LiAlH4 Reduction of the Oxirane Ring. To iridoid acetate (100 mg) in 10 mL of dry THF was added LiAlH₄ (25 mg). The suspension was heated to reflux temperature. After the mixture cooled, methanol was added and the solution concentrated in vacuo after addition of water, the solution was neutralized with 6 N HCl, and decolorizing charcoal was added until the vanillin test was negative. The suspension was deposited on a gooch funnel, and salts were removed with water. Successive elution with methanol gave the organic fraction which was concentrated in vacuo and afforded a residue.

⁽¹⁴⁾ An attempt to detect the formation of the postulated 8,10-epoxy intermediate, made by registering a set of ¹H MR spectra of 4 in 2 N sodium deuterioxide solution in deuterium oxide while increasing the

<sup>softial deuterioride softial in deuterial of the white inferensing the temperature from 25 to 80 °C, was unsuccessful.
(15) (a) R. E. Parker and N. S. Isaacs,</sup> *Chem. Rev.*, **59**, 737 (1959); (b) J. G. Buchanan, H. Z. Sable in "Selective Organic Transformations", B. S. Thyagarajan, Ed., Wiley-Interscience, New York, 1972, Vol. 2, p 1; (c) S. J. Angyal and P. T. Gilham, *J. Chem. Soc.*, 3691 (1957).
(16) C. R. Burger, *L. Chem. Soc.*, 372 (2010) (1062)

⁽¹⁶⁾ G. B. Payne, J. Chem. Soc. 27, 3819 (1962).
(17) (a) J. A. Franks, Jr., B. Tolbert, R. Stein, and H. Z. Sable, J. Org. Chem., 30, 1440 (1965); (b) A. Hasegawa and H. Z. Sable, J. Org. Chem., 31, 4161 (1966).

⁽¹⁸⁾ A. Bianco, P. Esposito, M. Guiso, and M. L. Scarpati, Gazz. Chim. Ital., 101, 764 (1971).

⁽¹⁹⁾ G. Di Maio and L. Panizzi, Ric. Sci., 36, 845 (1966).

⁷⁻Deoxycynanchoside (14) from Hexa-O-acetylmacfadyenoside. The residue (60 mg) was chromatographed on silica gel (6 g) in chloroform/methanol (7:3) and afforded 14: Since get (0 g) in childron in methanici (1.6) and another (4. 38 mg; ¹H NMR (D₂O) δ 1.80 and 2.10 (2 H, o, J_{AB} = 15 Hz, J_{AX} = 4.5 Hz, J_{BX} = 3 Hz, 2H-7), 2.64 (1 H, brs, H-9), 3.52 (2 H, AB, J_{AB} = 14 Hz, 2H-10), 3.80 (1 H, q, $J_{6,7}$ = 4.5 Hz, $J_{6,7}$ = 3 Hz, H-6), 5.03 (1 H, d, $J_{3,4}$ = 6 Hz, H-4), 5.88 (1 H, s, H-1), 6.34 (1 H, d, $J_{3,4}$ = 6 Hz, H-3). Anal. Calcd for C₁₅H₂₄O₁₁:C, 47.37; H, 6.36. Found: C 47.75; H 6.20 C, 47.25; H, 6.39.

^{5,7-}Dideoxycynanchoside (2) from Hexa-O-acetylcatalpol. See ref 2.

Harpagide (15) from Penta-O-acetylantirrhinoside.²⁰ The residue (70 mg) after chromatography on silica gel (6 g) in n-butyl alcohol/methanol/water (14:1:4) afforded 15: 50 mg; ¹H NMR and ¹³C NMR spectra superimposable on those of natural harpagide.

6-Epiharpagide (16) from Penta-O-acetylprocumbide. The residue (80 mg) after chromatography on silica gel (7 g) in chloroform/methanol (4:1) afforded 16: 55 mg; ¹H NMR (D_2O) δ 1.21 (1 H, s, CH₃-10), 1.69 (2 H, o, J_{AB} = 14 Hz, J_{AX} = 7 Hz, J_{BX} = 12 Hz, 2H-7), 2.33 (1 H, brs, H-9), 4.26 (1 H, q, $J_{6,7}$ = 7 Hz, $J_{6,7} = 12$ Hz, H-6), 5.06 (1 H, d, $J_{3,4} = 6$ Hz, H-4), 5.64 (1 H, brs, H-1), 6.42 (1 H, d, $J_{3,4} = 6$ Hz, H-3). Anal. Calcd for $C_{15}H_{24}O_{10}$: C, 49.45; H, 6.64. Found: C, 48.97; H, 6.92.

Preparation of Hexa-O-methylmacfadyenoside (17). CH₃I (1 mL) and Ag_2O (1.2 g, freshly prepared) were added to 3 (250 mg) dissolved in dry DMF (10 mL) with stirring at room temperature and in the dark. After 24 h, CH₃I (0.5 mL) and Ag₂O (0.6 g) were added and stirring continued for 12 h. The suspension was filtered on a gooch funnel and the salts were washed with chloroform. A white precipitate was filtered off and washed repeatedly with chloroform. The combined solutions were concentrated in vacuo. The residue was chromatographed on silica gel (25 g), and elution with chloroform/methanol (24:1) afforded pure hexa-O-methylmacfadyenoside (17): 188 mg; ¹H NMR $(\text{CDCl}_3) \delta 2.86 (1 \text{ H}, \text{d}, J_{1,9} = 5 \text{ Hz}, \text{H-9}), 3.2-3.6 (18 \text{ H}, 6 \text{ OCH}_3), 3.61 (2 \text{ H}, \text{s}, 2\text{H-10}), 3.4-3.8 (1 \text{ H}, \text{H-7}), 3.94 (1 \text{ H}, \text{m}, \text{H-6}, \text{partly})$ masked), 4.65 (1 H, d, $J_{1',2'}$ = 7 Hz, H-1'), 4.98 (1 H, d, $J_{3,4}$ = 6

Hz, H-4), 5.50 (1 H, d, $J_{1,9}$ = 5 Hz, H-1), 6.48 (1 H, d, $J_{3,4}$ = 6 Hz, H-3).

Reaction of 17 with Sodium Hydroxide. Compound 17 (450 mg) was dissolved in methanol (1 mL). NaOH (2 N, 10 mL) was added, and the solution was heated for 10 h at 80 °C. After cooling, the solution was neutralized with 2 N HCl and extracted twice with chloroform. The combined organic solutions were evaporated in vacuo, and the residue was chromatographed on silica gel (40 g). Elution with chloroform/methanol (24:1) afforded hepta-O-methylcynanchoside (19, 170 mg) and hexa-O-methylcynanchoside (18, 200 mg): ¹H NMR of 19 (CDCl₃) δ 2.60 (1 H, cylinderloside (18, 200 mg). If I wint of 13 (CDCl₃) δ 2.00 (111, dd, $J_{1,9} = 1.5$ Hz, $J_{4,9} = 1$ Hz, H-9), 3.1-3.7 (23 H, 7 OCH₃ and 2H-10 signals), 3.80 (1 H, d, $J_{6,7} = 7$ Hz, H-7), 4.56 (1 H, d, $J_{6,7} = 7$ Hz, H-6), 5.06 (1 H, dd, $J_{3,4} = 6.5$ Hz, $J_{4,9} = 1$ Hz, H-4), 5.67(1 H, d, $J_{1,9} = 1.5$ Hz, H-1), 6.38 (1 H, d, $J_{3,4} = 6.5$ Hz, H-9), ¹H NMR of 18 (CDCl₃) δ 2.54 (1 H, d, $J_{1,9} = 3.5$ Hz, H-9), 3.5-4.2(21 H H-7 2H.0 and 6 OCH. signals) 4.50 (1 H d, $J_{4,7} = 7$ Hz (21 H, H-7, 2H-10 and 6 OCH₃ signals), 4.50 (1 H, d, $J_{6,7} = 7$ Hz, H-6), 5.04 (1 H, d, $J_{3,4} = 6.5$ Hz, H-4), 5.47 (1 H, d $J_{1,9} = 3.5$ Hz, H-1), 6.30 (1 H, d, $J_{3,4} = 6.5$ Hz, H-3).

Preparation of Hexa-O-methylcynanchoside (19) from Cynanchoside (1). Cynanchoside (1, 150 mg), methylated as described for 3 (0.6 mL of CH₃I and 720 mg of Ag₂O), afforded a crude residue which on chromatography on silica gel (8 g) and elution with chloroform/methanol (97:3) afforded pure 19 (60 mg).

Registry No. 1, 80666-56-4; 2, 81892-75-3; 3, 54835-65-3; 3 hexaacetate, 54621-31-7; 4, 2415-24-9; 4 hexaacetate, 6910-20-9; 5, 20770-65-4; 5 hexaacetate, 20770-66-5; 6, 30688-55-2; 7, 79549-53-4; 8, 86372-54-5; 9, 86362-15-4; 10, 20486-27-5; 10 hexaacetate, 35993-19-2; 11, 36476-17-2; 12, 73366-31-1; 13, 73366-30-0; 14, 86309-49-1; 15, 6926-08-5; 16, 86362-16-5; 17, 86309-50-4; 18, 86309-52-6; 19, 86309-51-5.

Syntheses and Reactivity of trans-6-Azabicyclo[3.1.0]hexan-2-ol Derivatives and Indano[1,2-b]aziridine. Structural Analogues of Mitomycin C

I-Ching Chiu and Harold Kohn*1

Department of Chemistry, University of Houston, Houston, Texas 77004

Received December 27, 1982

The synthesis and reactivity of three annelated aziridines (4-6) are described. trans-6-Azabicyclo [3.1.0] hexan-2-ol (4) and cis-2-methyl-trans-6-azabicyclo[3.1.0]hexan-2-ol (5) undergo regio- and stereospecific ring opening of the aziridine ring in aqueous HCl and HClO₄ acid solutions. In each case, reaction proceeds at carbon-5 to give the trans-ring-opened product. Correspondingly, treatment of indano[1,2-b]aziridine (6) with aqueous HClO₄ acid gave a 2.7:1 mixture of cis- and trans-2-amino-1-indanol (39 and 40, respectively). Comparison of these results with those previously reported for the acid-promoted hydrolysis of mitomycin C (1) suggests that hydrolysis in the latter case may proceed by initial loss of methanol to give the indoloquinone, followed by regiospecific ring opening of the aziridine ring by an S_N 1-type process.

Mitomycin C (1) is a clinically useful antineoplastic

antibiotic compound. Its mechanism of action at the molecular level both in vitro and in vivo is ill-defined.² Extensive studies have indicated that the biological event of primary importance induced by the mitomycins is probably the alkylation of DNA.¹ A series of mechanisms have been advanced that invoke the involvement of both the aziridine and the carbamate moieties.³ The initial step is believed to be reduction of the quinone moiety to a semiquinone. This is suggested to be a necessary step for efficient, noncovalent binding of the drug with the substrate DNA. Subsequent reduction of the complexed semiquinone radical to the hydroquinone is followed by loss of methanol at C-9 and C-9a to give an indolohydroquinone ring system. This then fully activates the drug by unmasking electrophilic centers at carbon-1 of the aziridine ring and carbon-10 adjacent to the carbamate

⁽²⁰⁾ In ref 5 the reduction was carried out with Li/NH_3 .

⁽²¹⁾ A. Bianco, P. Caciola, M. Guiso, C. Iavarone, and C. Trogolo, Gazz. Chim. Ital., 111, 201 (1981).

⁽¹⁾ Alfred P. Sloan Foundation Fellow, 1977-1981. Camille and Henry

⁽¹⁾ Alled T. Stoan Foundation Feldw, 151/1551. Cambridge and Henry Dreyfus Teacher-Scholar Grant Recipient, 1977-1982.
(2) (a) Remers, W. A. "The Chemistry of Antitumor Antibiotics"; Wiley: New York, 1979; Vol. 1, pp 221-276. (b) Crooke, S. T.; Bradner, W. T. Cancer Treat. Rev. 1976, 3, 121-140. (c) Comis, R. L.; Carter, S. K. Cancer 1974, 34, 1576-1586 and references therein.

^{(3) (}a) Iyer, V. N.; Szybalski, W. Science 1964, 145, 55-58. (b) Szy-balski, W.; Iyer, V. N. In "Antibiotics. Mechanism of Action"; Gottlieb, D., Shaw, P. D., Eds.; Springer: New York, 1967; Vol. 1, pp 211-245. (c) Patrick, J. B.; Williams, R. P.; Meyer, W. E.; Fulmor, W.; Cosulich, D. B.; Broschard, R. W. J. Am. Chem. Soc. 1964, 86, 1889-1990. (d) Moore, H. W. Science 1977, 197, 527-532.